Lifesight attribution report is used to understand the impact of your campaigns on offline store visits. Key benefits from Lifesight attribution are : 

1) Enables you to do real time campaign optimisation.

2) In-depth Analysis of campaign success/failure from demographic, engagement, ROAS & brand lift perspectives.

3) Pre-campaign tool to plan for subsequent ad deliveries and retargeting.


Viewing your report

Let's look into the basic view of an Attribution Report.



A. Key Metrics


B. Five sections of the report:

1. Overview

2. Attribution

3. Engagement

4. Places

5. Conversion


C. Filter Report Data


D. Export Report



A. Key Metrics


Along the top of your reporting dashboard is the key metrics that summarises the performance of your campaign. The key metrics has three sections as follows:




Impressions: Total number of Ad views delivered in the campaign. Whether the Ad is clicked or not is not taken into account. Each time an Ad is delivered for the campaign, it is counted as one impression.


Clicks: Click on the Ad in any channel (Subset of Impressions). Every time someone clicks on an ad this is recorded and then displayed as the total number of clicks.


Campaign Reach: Total Number of Unique Devices that were reached by the campaign.


Frequency: Frequency is the average number of impressions delivered per unique device.



Total Exposed Visits: This is the number of visits that happened after seeing the Ad. If the same person visits twice to the store, then it is counted as two visits.


Exposure Index: [Total Number of Exposed Visits / Total Number of Visits]. This gives an indication about the effectiveness of the Ad campaign. Exposure index of 1% suggests that the campaign has managed to reach 1% of your total organic visitors.


Visit Index: This is to represent what percentage of the impressions ended up in visits.
Example: If 1000 impressions leads to 1 visit, visit index is 1


Confidence: This attribution report is statistically estimated with a confidence of 95%.



Cost per exposed Visit: 

This gives the cost incurred to get one Exposed Individual to the store.


B. Five sections of the Report


For the sake of convenience, the attribution report is divided into five major sections (five tabs). You can navigate easily to other sections of the report by clicking on the tabs.(Refer to the illustration below)


  • Tab 1: Overview
  • Tab 2: Attribution
  • Tab 3: Engagement
  • Tab 4: Places
  • Tab 5: Conversion


To illustrate:




B.01 Overview


The first tab of the attribution report is the overview. All your app users came from somewhere - a paid advertisement on an ad network displayed in different channels like Mobile App, Desktop, Mobile Web, Social Media, etc. The attribution overview gives you the channel-wise break-up on the amount spent in advertisements, visits, visit index, cost per visit index, etc. This gives a big picture on which channel is more effective in bringing visits.


Spend: 

As an advertiser you want to know the amount spent on each channel and its effectiveness in bringing visits to the outlets.


Channel Lift: 

Channel lift is a measurement of the impact of an advertising campaign and is primarily used to identify the effectiveness of various channels in bringing more visits or conversions. It indicates the effectiveness of a particular channel vis-a-vis the whole campaign.


B.02 Attribution


An attribution model is the rule, or set of rules, that determines how credit for sales and conversions is assigned to various engagements with the Ads in the conversion journey. For example, the Last touch attribution model in Analytics assigns 100% credit to the final touch point (i.e., views / clicks) that immediately precede visits or conversions.




Conversion Rate Identifies what percentage of Impressions/Clicks got converted as exposed visits at the attributed stores.


Example:
If 1000 impressions leads to 1 (incremental) visit, then conversion rate = 0.1%
If 100 clicks leads to 1 (incremental) visit, conversion rate = 1%.


In the above graph, you can view the conversion rate in four different views:


1. Custom Range: 

This shows the conversion rate for each day during the specified date range. From this you can understand how many incremental visits you received during that date range.


2. Campaign Period: 

This shows the conversion rate for each day for the whole campaign period.


3. Average of the Week: 

The total visits by day of the week reveals when the store is most visited during a typical week. You can now see in the graph with the number of incremental visits each day throughout the week.

Use this graph to identify the peak day of the week when you receive more traffic. If the peak is during a weekend, then consider adding a special offer during the weekend eve to create a last minute rush of sales. If the peak is around weekday, then make sure you promote your brand with advertising heavily during weekday, to draw in the biggest number of visitors.



4. Average of the Day:


The total visits by hour reveals when the store is most visited during a typical day. You can now see in the graph with the number of incremental visits throughout the day.

Use this graph to identify the peak times of the day when the website receives traffic. If the peak is just before midnight, then consider adding a special offer on the website that ends at midnight to create a last minute rush of sales. If the peak is around lunchtime, then make sure you promote the website with advertising heavily around 11am, just before lunchtime, to draw in the biggest number of visitors.



Fractional attribution is a process that collects data on different lead actions and their channels. It identifies how each channel have fractionally contributed to the total consolidated visits of the campaign.


B.03 Engagement


Genders


The Gender graph below shows the percentage of visitors by gender (Male Vs Female) out of the total incremental visits.
Exposure Index: If the total incremental visit is 100, then according to the graph below, exposure index of female and male are 11.8 and 13.5 respectively. It means out of every female visited your store, 11.8% of them were exposed to the ad. Similarly out of every male who visited the store, 13.5% of them are exposed to the ad.


Visit Index: It shows the number of female visitors converted for every 1000 female audience reached.


Age Groups


The Age graph below shows the percentage of visitors by Age group from the total incremental visits.






Devices


Diving into what operating system and devices your website is accessed from can help you concentrate your testing on the devices that your customers are actually using. Use this analysis to understand your customers. Focus on optimising the user experience on the most popular devices.

Example: If the total incremental visit is 100, then according to the graph below (figure x) 18 visitors are using Apple iPhones.



B.04 Places


Places Analysis


Location data can be useful for targeting your marketing and advertising and understanding who you are reaching. By knowing the top location where you got more visitors, you can focus on those locations to increase your sales. Similarly by knowing the least performing locations, you can optimise the ad campaigns in order to increase the performance in those locations. What level of detail is of interest to you depends on your organisation: maybe you care about the audiences across all the outlets, or maybe in specific outlets where you do business.




Top Brands: This shows the top brands visited by your customers apart from your brand. By knowing other brands that your customers are visiting will help you to understand them better.


Top Places: This shows the top places (POIs) visited by your customers.


Top Categories: This shows the top places categories visited by your customer (i.e. Fast Food, Cafe & Lounge, Hypermarket, Car Service, etc.)



B.05 Conversion


Lead Time to Conversion

A lead time to conversion is the latency between the time of seeing the Ad and visiting the store. For example, the lead time between the viewing of an Ad and visiting the outlet may be anywhere from few hours to few weeks. In the following figure, almost 60% of the visits happened within two days after seeing the Ad impression.



Impressions / Clicks Analysis


This Heat Map below shows the visit rate by time of day/day of the week. The last impression / click received prior to the visit is attributed to the actual visit. The darker the colour, the more visits were generated by impressions delivered during those times.



Visitation Patterns

Heat map visualises the days and times when consumers (exposed visitor) visited the locations (POI visit time). The darker the colour, the more visits occurred during those times.




Visit and Engagement Frequency Analysis

The distribution of exposed visit against the frequency of engagement.




C. Filter your Report Data


You have some filtering options to choose from in order to customise a report for your business. So let's go over each option you have and your choices:




1. Date Range:  

Choose a date range. Here you'll choose what date range you'd like to focus on in this report and in what time range.



2. Filter:

 

- Channel Values 

The advertisement campaign on an ad network is displayed in different channels like Mobile App, Desktop, Mobile Web, Social Media, etc. You can filter report by channel values. Filtering the attribution report based on channels that have been viewed on an ad network will help to understand which channel should be promoted, which channel should be optimised, and which channels are helping to push people towards conversion.


- Custom Values 

You can filter report by custom values that you have given when you have created the tracker. For example: You have uploaded three creatives and you have named them as banner A, banner B and banner C respectively. Now you want to know the performance of these creatives. Filtering the attribution report based on creatives that have been viewed on your website to figure out which creatives attracted the audience well. This will help to understand which creatives/pages should be promoted, which creatives/pages should be optimised, and which creatives/pages are helping to push people down the funnel quicker than others.


- Engagement Filter (Impressions Or Clicks): 

You can filter the output based on either Impressions(Views) or Clicks. By default, the report is shown based on Impressions (Views)


Our report measures two different types of conversions:  Click-to Visit and View-to Visit

  • Click-to Visit is counted when a user clicks an ad and then converted as a customer by visiting your outlet.

  • View-to Visit counts customers who were shown an ad and did not click on it, but converted later.



D. Export Report


To "Export" the attribution report, click on the EXPORT ATTRIBUTION REPORT button on the top-right corner of the report page. You can export the report in two formats:


1. Export as CSV (raw data)

2. Export as PDF (coming soon)


Understanding the terms


When making a decision here on filtering / exporting your report, it's important to know what these terms means and exactly what choices you should be making when customising your report. To view the complete set of definition of these terms, visit the Glossary of Terms.